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SUMMARY 

The aim for this study was to propose a novel deconvolution technique to improve the recovery 
of genetic architecture information for a trait that was obscured by strong marker linkage 
disequilibrium. With a simulated datasets with sample size of 3,500, this deconvolution technique 
has reduced the departure in distribution between true and estimated marker test statistics by up to 
5.82-folds on a trait with heritability of 0.3 and 2,000 quantitative trait loci. Under the same scenario, 
deconvolution also improved the correlation between true and haplotype significance of association 
by 24.9%. Therefore, deconvolution could serve as a promising approach in recovery of genetic 
architecture information that could help in its elucidation in livestock traits. 
 
INTRODUCTION 

Strong linkage disequilibrium (LD) between markers has complicated the estimation of genetic 
architecture of various livestock traits (Lloyd-Jones et al. 2019). While marker pruning can be used 
to obtain markers that were roughly in linkage equilibrium (Chang et al. 2015), this method depends 
on arbitrarily defined parameters such as window sizes and LD thresholds, which could affect the 
representativeness of retained markers and thus potentially genetic architecture estimation. An 
alternative approach is the deconvolution of marker effect sizes using a LD matrix. This technique 
has been used in signal processing in other fields such as radio astronomy (Clark 1980), but studies 
on its use in genetic architecture parameter estimation remained sparse. 

The aim for this study was to propose a novel technique for deconvolution of marker effect size 
and test statistics from a Genome-Wide Association Study (GWAS). This technique was tested on 
simulated datasets, with the aim of recovering the underlying effect size distribution and improving 
the correlation between true and estimated significance of association of haplotype regions. 
 
THE DECONVOLUTION METHOD 

The marker effect sizes from a GWAS 𝜷𝜷� can be modelled as the result of convolution between 
the true effect size 𝜷𝜷 and LD matrix 𝑹𝑹 with noise 𝒆𝒆 (Cheng et al. 2020):  

𝜷𝜷� = 𝑹𝑹 ∗ 𝜷𝜷 + 𝒆𝒆 [1] 
This 𝜷𝜷 can be estimated (let this estimate be 𝜷𝜷�) based on Hogböm’s CLEAN algorithm. 

Originally introduced in radio interferometry, this algorithm iteratively removes the effects of point 
spread function (PSF) from the raw signals while transferring the maximums onto clean signals 
(Clark 1980). In this study, 𝑹𝑹, 𝜷𝜷� and 𝜷𝜷� represented the PSF, raw and clean signals respectively. 

To improve the computational efficiency in cases when number of markers 𝑀𝑀 exceeds sample 
sizes 𝑁𝑁, matrix 𝒁𝒁 (defined such that 𝒁𝒁𝑇𝑇𝒁𝒁 = 𝑹𝑹) was used in place of 𝑹𝑹. Note that 𝒁𝒁 is not the 
Cholesky’s factor of 𝑹𝑹; 𝒁𝒁 is a rectangular matrix its 𝑗𝑗-th columns defined as follows:  

𝒛𝒛𝒋𝒋 =
𝒙𝒙𝒋𝒋 − 2𝑝𝑝𝑗𝑗

�∑�𝒙𝒙𝒋𝒋 − 2𝑝𝑝𝑗𝑗�
2

[2]
 

where 𝑿𝑿 is the raw genotype array, and 𝑝𝑝𝑗𝑗 is the allele frequency for marker 𝑗𝑗.  
Let 𝒕𝒕� be the raw test statistics from GWAS. While other definitions such as Aguilar et al. (2019) 
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can be used with this method, for this study the 𝒕𝒕� was defined as 𝜷𝜷� scaled by its standard deviation 
𝑠𝑠 (Gondro 2015). The deconvolution starts by identifying the genome-wide top marker in term of 
|𝒕𝒕�| (let 𝑚𝑚 be this marker), from which the corresponding marker effect size 𝛽̂𝛽𝑚𝑚 and 𝑚𝑚-th column of 
𝒁𝒁, 𝒛𝒛𝒎𝒎, were obtained. This marker effect size was recorded as the 𝑚𝑚-th elements of 𝜷𝜷�. To prevent 
overcorrection of marker effect sizes which could destabilize the algorithm, the 𝑚𝑚-th element of 𝜷𝜷� 
was “muted” by setting it as “NAN” and no longer used in any subsequent iterations. The effect 
sizes and test statistics unexplained by 𝛽̂𝛽𝑚𝑚, 𝜷𝜷�(1) and 𝒕𝒕�(1), were estimated as follows (Gondro 2015):  

𝜷𝜷�(1) = 𝜷𝜷� − 𝛽̂𝛽𝑚𝑚𝒁𝒁𝑇𝑇𝒛𝒛𝑚𝑚 [3] 

𝒕𝒕�(1) =
𝜷𝜷�(1)

𝑠𝑠
[4] 

with the subscript (𝑘𝑘) denotes the 𝑘𝑘-th iteration of this algorithm. The next iteration starts by 
identifying the top marker in term of |𝒕𝒕�(1)| and its corresponding 𝛽̂𝛽𝑚𝑚 and 𝒛𝒛𝑚𝑚. This process iterates 
until all markers were deconvolved. The deconvolved test statistics 𝒕𝒕� could be obtained by scaling 
𝜷𝜷� with 𝑠𝑠 as in [4], as empirical simulations suggested that 𝜷𝜷� scaled with 𝑠𝑠 better reflects the true 
QTL effect sizes as it considers the inflation of estimated marker effect sizes in the 𝜷𝜷�.  
 
TESTING THE DECONVOLUTION METHOD 

The deconvolution method was tested using Python (version 3.11.5, released 11 September 
2023) with simulated genotypes and phenotypes under changing parameter values, with the 
parameter tested and their associated values provided in Table 1.  
 
Table 1. Parameters and their associated values tested in this experiment 
 

Parameters Default Value Alternative Value 
Sample size 3500 1500 
Number of QTL 2000 500 
Genotype Array 𝑿𝑿𝟐𝟐𝟐𝟐  𝑿𝑿𝟏𝟏𝟏𝟏𝟏𝟏  

 
Two 60k genotype arrays (denoted as 𝑿𝑿𝟐𝟐𝟐𝟐 and 𝑿𝑿𝟏𝟏𝟏𝟏𝟏𝟏 respectively) were simulated using QMSim 

(Sargolzaei and Schenkel 2009) with historical population size set at 2,000 and 10,000 respectively, 
and were gene-dropped for 12,000 and 60,000 generations respectively. 20 chromosomes of 100 cM 
and mutation rate at 2.5 × 10−5 were used for both arrays, and sample sizes as provided in Table 1.  

Within a genotype array 𝑿𝑿, 2000 or 500 markers were designated as QTL and their effect size 𝜷𝜷 
simulated using gamma distribution 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(0.4 , 1). Phenotype 𝒚𝒚 was then calculated as follows:  

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒆𝒆 
where 𝒆𝒆 is the residual component simulated using normal distribution 𝑁𝑁 �0 , �1−ℎ

2�𝑣𝑣𝑣𝑣𝑣𝑣(𝑿𝑿𝑿𝑿)
ℎ2

� with the 
heritability ℎ2 set at 0.3. The GBLUP-backsolved marker effect sizes 𝜷𝜷� and test statistics 𝒕𝒕� were 
obtained as described by VanRaden (2008) and Gondro (2015). The expected test statistics with zero 
LD between QTL and estimation error, 𝒕𝒕, were also calculated from 𝜷𝜷 as 𝑡𝑡𝑖𝑖 = 𝛽𝛽𝑖𝑖�(𝑁𝑁 − 2)𝑣𝑣𝑣𝑣𝑣𝑣(𝒙𝒙𝒊𝒊)/
�𝑣𝑣𝑣𝑣𝑣𝑣(𝒚𝒚) − 𝛽𝛽𝑖𝑖2𝑣𝑣𝑣𝑣𝑣𝑣(𝒙𝒙𝒊𝒊) (Wang and Xu, 2019). Deconvolution was then applied onto 𝜷𝜷� and 𝒕𝒕� to yield 
the corresponding 𝜷𝜷� and 𝒕𝒕�. Minor allele frequency filtering of 0.05 was applied on GWAS and the 
deconvolution algorithm. The deconvolved test statistics 𝒕𝒕� (denoted as DCV) were tested against 
raw test statistics 𝒕𝒕� (denoted as RAW), as well as LD pruning and equal distance pruning methods 
(denoted as LDT and EQL respectively). For LDT, the markers were pruned as in “indep-pairwise” 
from PLINK 2.0 (Chang et al. 2015) with window size, step size and LD threshold at 50, 10 and 0.4 
respectively. For EQL, the fifth of every non-overlapping 10 SNPs windows were chosen.  
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Two metrics were used to measure the methods’ performance: departure in distribution (𝐷𝐷𝐷𝐷𝐷𝐷) 
and correlation between true and marker haplotype scores (𝑟𝑟ℎ2). The 𝐷𝐷𝐷𝐷𝐷𝐷 was measured with 
Wasserstein’s distance between the distribution of |𝒕𝒕| and |𝒕𝒕�| as defined by Vasershtein (1969), with 
a lower statistic indicates a reduced departure and improved performance. To ensure the retained 
markers accurately represent the haplotypes’ significance of association, the 𝐷𝐷𝐷𝐷𝐷𝐷 was calculated 
using the top marker within a marker window, with the marker being used as the window’s midpoint. 
To maintain the genotyping density, markers that were removed during the pruning process were 
assigned as zero in 𝒕𝒕�. For 𝑟𝑟ℎ2, the correlation between the sums of |𝒕𝒕| within each haplotype blocks 
with that from raw marker |𝒕𝒕�| or deconvolved |𝒕𝒕�| were obtained (Villiers et al. 2024). The blocks 
were defined as the window of markers in the 𝐷𝐷𝐷𝐷𝐷𝐷, with both EQL and LDT methods being tested.  

This experiment was repeated 40 times for each set of parameter values. Welch’s t-test was used 
to test the significance of differences in performance between methods and parameters, with two 
tests considered significantly different if the logarithmically transformed p-values 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 > 2.  
 
RESULTS AND DISCUSSION 

Compared to other methods tested, deconvolution significantly reduces departure in distributions 
𝐷𝐷𝐷𝐷𝐷𝐷 between true and marker test statistics (Table 2); for example, under default parameter values, 
deconvolution reduces the 𝐷𝐷𝐷𝐷𝐷𝐷 by 3.22-folds from 0.954 to 0.296, which was also 2.86-folds and 
1.15-folds decrease compared to LDT and EQL respectively (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 up to 114.8 between DCV 
and RAW) (Figure 1). This differences in performance were even more significant in 𝑿𝑿𝟏𝟏𝟏𝟏𝟏𝟏, 
achieving a 5.82-folds reduction from 0.972 in RAW to 0.167 in DCV (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 127.7). 
Reducing the sample size from 3500 to 1500 also reduces the 𝐷𝐷𝐷𝐷𝐷𝐷 for DCV from 0.297 to 0.221 
(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 73.6). This however contrasted with the significantly increased 𝐷𝐷𝐷𝐷𝐷𝐷 for all other 
methods (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 up to 51.5 for RAW and 39.1 for LDT). These results highlighted the negative 
impacts of LD between markers in obscuring a trait’s QTL effect size distribution especially with 
small sample sizes, and that the effects of LD can be removed using deconvolution. 
 
Table 2. Departure in distribution (𝑫𝑫𝑫𝑫𝑫𝑫) between true and raw (RAW) test statistics, test 
statistics pruned with LD threshold (LDT) and by 10 markers window (EQL) and from 
deconvolution (DCV). Superscripts with different letters denote significant differences 
between methods 
 

Parameters Values Method 
  RAW LDT EQL DCV 
Sample size (default) 3500 0.954a 0.849b 0.341c 0.296d 
                    (alternative) 1500 0.975a 0.868b 0.356c 0.221d 
Number of QTL 500 0.953a 0.849b 0.347c 0.295d 
Genotype array 𝑿𝑿𝟏𝟏𝟏𝟏𝟏𝟏  0.972a 0.957b 0.369c 0.167d 

 
Deconvolution also significantly increases the correlations of haplotype scores between true and 

estimated haplotype scores 𝑟𝑟ℎ2 for both LD threshold pruning (LDT) and 10 marker windows (EQL) 
haplotype block definitions (Table 3); with the exception of default parameter values with EQL 
where the improvement of DCV from RAW was not deemed statistically significant (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
1.27); significant improvements were observed for all other parameter values with both EQL and 
LDT methods. These improvements were even more significant for 𝑿𝑿𝟏𝟏𝟏𝟏𝟏𝟏 and in the oligogenic case 
of 500 QTL; for example, deconvolution improves the correlation from 0.650 to 0.825 in LDT 
(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 16.1) and from 0.748 to 0.843 in EQL (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 8.04) in the case with 500 QTL, a 
more significant improvement than with 2,000 QTL, suggesting deconvolution improves how well 
the marker haplotype score in reflecting the true contribution toward the phenotype.  
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Figure 1. Top 40% tail distribution of true (TRUE), raw (RAW), LD threshold-pruned (LDT), 
10 marker window (EQL) and deconvolved (DCV) test statistics under default scenario 
 
Table 3. Correlation in haplotype score for raw (RAW) and deconvolved (DCV) test statistics, 
𝒓𝒓𝒉𝒉𝟐𝟐, for haplotype block by LD threshold or by 10 markers window under changing parameter 
values. Superscripts with different letters denote significant differences between methods 
 

Parameters Values LD threshold pruned (LDT) 10 marker windows (EQL) 
  RAW DCV RAW DCV 
Sample size (default) 3500 0.457a 0.578b 0.571b 0.610b 
                    (alternative) 1500 0.253a 0.351c 0.328b 0.391c 
Number of QTL 500 0.650a 0.825c 0.748b 0.843c 
Genotype array 𝑿𝑿𝟏𝟏𝟏𝟏𝟏𝟏  0.288a 0.431c 0.332b 0.444c 

 
CONCLUSION 

A novel technique for deconvolution of GWAS statistics that improves the recovery of genetic 
architecture information was proposed. This technique has successfully reduced the departure in 
distribution between true and inferred effect size distributions and improved how well the marker 
haplotype score reflects the true contribution under varying scenarios. It is anticipated this method 
could be used on a real datasets to elucidate the genetic architectures for various livestock traits.  
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